ForkJoin框架与读写锁
Fork/Join框架就是在必要的情况下,将一个大任务,进行拆分(fork)成若千个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行join汇总。
ForkJoin框架采用工作窃取
模式(work-stealing) :当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。
相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的处理方式上,在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态。而在fork/join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行。那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行。这种方式减少了线程的等待时间,提高了性能。
ForkJoin框架
下面是一个很简单的示例,即用Fork/Join框架来计算0-500亿的和,普通For用时13745毫秒,Fork/Join框架用时8846毫秒,而且还有拆装箱的时间,足以看出Fork/Join框架的优势。
import java.time.Duration;
import java.time.Instant;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
public class TestForkJoinPool {
public static void main(String[] args) {
Instant start = Instant.now();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinSunCalculate(0L, 50000000000L);
Long invoke = forkJoinPool.invoke(task);
System.out.println(invoke);
Instant end = Instant.now();
System.out.println(Duration.between(start, end).toMillis()); //8846
}
public static void main(String[] args) {
Instant start = Instant.now();
long sum = 0L;
for (long i = 0; i < 50000000000L; i++) {
sum += i;
}
System.out.println(sum);
Instant end = Instant.now();
System.out.println(Duration.between(start, end).toMillis()); //13745
}
}
class ForkJoinSunCalculate extends RecursiveTask<Long> {
private long start;
private long end;
//临界值
private static final long VALUE = 10000L;
public ForkJoinSunCalculate(long start, long end){
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
long length = end - start;
if(length <= VALUE){
long sum = 0L;
for (long i = start; i <= end; i++) {
sum += i;
}
return sum;
}else{
long middle = (end - start) / 2 + start;
ForkJoinSunCalculate leftCalculate = new ForkJoinSunCalculate(start, middle);
leftCalculate.fork(); //进行拆分,同时压入线程队列
ForkJoinSunCalculate rightCalculate = new ForkJoinSunCalculate(middle + 1, end);
rightCalculate.fork();//进行拆分,同时压入线程队列
return leftCalculate.join() + rightCalculate.join();
}
}
}
用JDK8的特性stream谁快呢?
import java.time.Duration;
import java.time.Instant;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
import java.util.stream.LongStream;
public class TestForkJoinPool {
public static void main(String[] args) {
Instant start = Instant.now();
long sum = LongStream.rangeClosed(0L, 50000000000L)
.parallel()
.reduce(0L, Long::sum);
System.out.println(sum);
Instant end = Instant.now();
System.out.println(Duration.between(start, end).toMillis()); //5156
}
}
其实这简单的计算还是stream更快,底层优化太多了。
ReadWriteLock
ReadWriteLock维护了一对相关的锁,一个用于只读操作,另一个用于写入操作。只要没有writer,读取锁可以由多个reader线程同时保持,写入锁是独占的。
ReadWriteLock读取操作通常不会改变共享资源,但执行写入操作时,必须独占方式来获取锁。对于读取操作占多数的数据结构。ReadWriteLock 能提供比独占锁更高的并发性。而对于只读的数据结构,其中包含的不变性可以完全不需要考虑加锁操作。
package thread_study;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
//读写锁
public class TestReadWriteLock {
public static void main(String[] args) {
ReadWriteLockDemo writeLockDemo = new ReadWriteLockDemo();
new Thread(()->{
for (int i = 0; i < 30; i++) {
writeLockDemo.set(i);
}
}, "Write Thread").start();
for (int i = 0; i < 20; i++) {
new Thread(writeLockDemo::get, "Read Thread").start();
}
}
}
class ReadWriteLockDemo{
private int number = 0;
private ReadWriteLock lock = new ReentrantReadWriteLock();
public void get(){
lock.readLock().lock();
try{
System.out.println(Thread.currentThread().getName() + " : " + number);
}finally {
lock.readLock().unlock();
}
}
public void set(int number){
lock.writeLock().lock();
try{
System.out.println(Thread.currentThread().getName());
this.number = number;
}finally {
lock.writeLock().unlock();
}
}
}