通过MLP实现手写数字识别是一个经典案例,mnist 是keras自带的一个用于手写数字识别的数据集,它的图像的分辨率是 ,也就是有784个像素点,它的训练集是60000个手写体图片及对应标签,测试集是10000个手写体图片及对应标签。本例中:输入层784个单元,两个隐藏层都是392个神经元,最后输出层10个单元:
之前主要学习了常见的机器学习算法,现在开始进入另一个环节:深度学习。首先就是多层感知机模型,Multi-Layer Perception(简称MLP)是标准的全连接神经网络模型,它由节点层组成,其中每个节点连接到上一层的所有输出,每个节点的输出连接到下一层节点的所有输入。本节会从一个简单的分类任务开始,逐步探讨多层感知机的工作原理。
通过酶活性预测实战来体验体验模型从欠拟合到过拟合、再到拟合的过程。选择模型从线性回归 -> 多项式回归。通过进行异常检测,帮助找到了潜在的异常数据点,进行主成分分析,判断是否需要降低数据维度,然后通过数据分离,即使未提供测试样本,也能从训练数据中分离出测试数据。然后计算得到混淆矩阵,实现模型更全面的评估。最后通过调整KNN核心参数让模型在训练数据和测试数据上均得到了好的表现。